Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583435

RESUMO

Endothelins and renal dopamine contribute to control of renal function and arterial pressure in health and various forms of experimental hypertension, the action is mediated by tonic activity of specific receptors. We determined the action mediated by endothelin type B and by dopamine D3 receptors (ETB-R, D3-R) in anaesthetized spontaneously hypertensive (SHR) and in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. In rats of both hypertension models infused during 60 min into the interstitium of in situ kidney were either ETB-R antagonist, BQ788 (0.67 mg kg-1 BW h-1) or D3-R antagonist, GR103691 (0.2 mg kg-1 BW h-1). Arterial pressure (MAP), renal artery blood flow (RBF, transonic probe) and renal medullary blood flow (MBF, laser-Doppler) were measured along with sodium, water and total solute excretion (UNaV, V, UosmV). Experiments with ETB-R blockade confirmed their tonic vasodilator action in the whole kidney (RBF) and medulla (MBF) in both hypertension models. In SHR only, the first evidence was provided that ETB-R specifically increases transtubular backflux of non-electrolyte solutes. In DOCA-salt rats ETB-R blockade caused an early decrease in water and salt transport whereas an increase was often reported from many previous studies. The most striking effect of D3-R blockade in SHR was a selective increase in MBF, which strongly suggested tonic vasoconstrictor action of these receptors in the renal medulla; this speaks against prevailing opinion that D3 receptors are virtually inactive in SHR. In our model variant of DOCA-salt rats of D3-R blockade clearly caused a rapid major increase in MAP in parallel with depression of renal haemodynamics.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Receptores de Dopamina D3 , Acetato de Desoxicorticosterona/farmacologia , Antagonistas dos Receptores de Endotelina/farmacologia , Ratos Endogâmicos SHR , Hipertensão/induzido quimicamente , Endotelinas/farmacologia , Água , Acetatos/farmacologia , Pressão Sanguínea , Endotelina-1
2.
AAPS J ; 26(3): 46, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609650

RESUMO

Patients with ß-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.


Assuntos
Acetato de Desoxicorticosterona , Hemocromatose , Humanos , Desferroxamina , Ácido Hialurônico , Ácidos e Sais Biliares
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462025

RESUMO

BACKGROUND: The aortic endothelium is crucial in preserving vascular tone through endothelium-derived vasodilators and vasoconstrictors. Dysfunction in the endothelium is an early indicator of cardiovascular diseases. Our study explores the therapeutic potential of a dual-acting peptide (DAP) to co-activate Mas and pGCA receptors and restore the balance between vasodilators and vasoconstrictors on endothelial dysfunction in DOCA-salt-induced hypertensive rats. METHODS: DOCA-salt was administered to male wistar rats to induce hypertension, and various parameters, including blood pressure (BP), water intake and body weight were monitored. DAP, Ang1-7, BNP, and losartan were administered to hypertensive rats for three weeks. Histological analysis and isometric tension studies were carried out to assess endothelial function. In addition to this, we used primary aortic endothelial cells for detailed mechanistic investigations. RESULTS: DOCA-salt administration significantly elevated systolic, diastolic, mean arterial BP, and water intake whereas, downregulated the gene expression of Mas and pGCA receptors. However, DAP co-administration attenuated BP increase, upregulated the gene expression of Mas and pGCA receptors, normalized serum and urinary parameters, and effectively reduced fibrosis, inflammation, and vascular calcification. Notably, DAP outperformed the standard drug, Losartan. Our findings indicate that DAP restores aortic function by balancing the NO and ET1-induced pathways. CONCLUSION: Co-activating Mas and pGCA receptors with DAP mitigates vascular damage and enhances endothelial function, emphasizing its potential to maintain a delicate balance between vasodilatory NO and vasoconstrictor ET1 in endothelial dysfunction.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Masculino , Animais , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Endotelina-1/uso terapêutico , Losartan/farmacologia , Losartan/uso terapêutico , Óxido Nítrico/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Células Endoteliais/metabolismo , Vasodilatadores/efeitos adversos , Endotélio Vascular/metabolismo , Ratos Wistar , Vasoconstritores/efeitos adversos , Cloreto de Sódio na Dieta/efeitos adversos
4.
Metabolism ; 154: 155831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431129

RESUMO

BACKGROUND: Excessive dietary salt intake increases vascular stiffness in humans, especially in salt-sensitive populations. While we recently suggested that the endothelial sodium channel (EnNaC) contributes to salt-sensitivity related endothelial cell (EC) and arterial stiffening, mechanistic understanding remains incomplete. This study therefore aimed to explore the role of EC-serum and glucocorticoid regulated kinase 1 (SGK1), as a reported regulator of sodium channels, in EC and arterial stiffening. METHODS AND RESULTS: A mouse model of salt sensitivity-associated vascular stiffening was produced by subcutaneous implantation of slow-release deoxycorticosterone acetate (DOCA) pellets, with salt (1 % NaCl, 0.2 % KCl) administered via drinking water. Preliminary data showed that global SGK1 deletion caused significantly decreased blood pressure (BP), EnNaC activity and aortic endothelium stiffness as compared to control mice following DOCA-salt treatment. To probe EC signaling pathways, selective deletion of EC-SGK1 was performed by cross-breeding cadherin 5-Cre mice with sgk1flox/flox mice. DOCA-salt treated control mice had significantly increased BP, EC and aortic stiffness in vivo and ex vivo, which were attenuated by EC-SGK1 deficiency. To demonstrate relevance to humans, human aortic ECs were cultured in the absence or presence of aldosterone and high salt with or without the SGK1 inhibitor, EMD638683 (10uM or 25uM). Treatment with aldosterone and high salt increased intrinsic stiffness of ECs, which was prevented by SGK1 inhibition. Further, the SGK1 inhibitor prevented aldosterone and high salt induced actin polymerization, a key mechanism in cellular stiffening. CONCLUSION: EC-SGK1 contributes to salt-sensitivity related EC and aortic stiffening by mechanisms appearing to involve regulation of actin polymerization.


Assuntos
Células Endoteliais , Proteínas Imediatamente Precoces , Proteínas Serina-Treonina Quinases , Rigidez Vascular , Animais , Humanos , Camundongos , Actinas/metabolismo , Aldosterona/metabolismo , Aldosterona/farmacologia , Pressão Sanguínea/fisiologia , Acetato de Desoxicorticosterona , Células Endoteliais/metabolismo , Glucocorticoides/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Imediatamente Precoces/metabolismo
5.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338476

RESUMO

The present work aimed to study the feasibility of Angelica sinensis polysaccharide (ASP) as an instinctive liver targeting drug delivery carrier for oridonin (ORI) in the treatment of hepatocellular carcinoma (HCC). ASP was reacted with deoxycholic acid (DOCA) via an esterification reaction to form an ASP-DOCA conjugate. ORI-loaded ASP-DOCA nanoparticles (ORI/ASP-DOCA NPs) were prepared by the thin-film water method, and their size was about 195 nm in aqueous solution. ORI/ASP-DOCA NPs had a drug loading capacity of up to 9.2%. The release of ORI in ORI/ASP-DOCA NPs was pH-dependent, resulting in rapid decomposition and accelerated drug release at acidic pH. ORI/ASP-DOCA NPs significantly enhanced the accumulation of ORI in liver tumors through ASGPR-mediated endocytosis. In vitro results showed that ORI/ASP-DOCA NPs increased cell uptake and apoptosis in HepG2 cells, and in vivo results showed that ORI/ASP-DOCA NPs caused effective tumor suppression in H22 tumor-bearing mice compared with free ORI. In short, ORI/ASP-DOCA NPs might be a simple, feasible, safe and effective ORI nano-drug delivery system that could be used for the targeted delivery and treatment of liver tumors.


Assuntos
Angelica sinensis , Carcinoma Hepatocelular , Acetato de Desoxicorticosterona , Diterpenos do Tipo Caurano , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Polissacarídeos/uso terapêutico
6.
J Hypertens ; 42(5): 856-872, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164960

RESUMO

BACKGROUND: Adipose c-Jun NH2-terminal kinase 1/2 (JNK1/2) is a central mediator involved in the development of obesity and its complications. However, the roles of adipose JNK1/2 in hypertension remain elusive. Here we explored the role of adipose JNK1/2 in hypertension. METHODS AND RESULTS: The roles of adipose JNK1/2 in hypertension were investigated by evaluating the impact of adipose JNK1/2 inactivation in both angiotensin II (Ang II)-induced and deoxycorticosterone acetate (DOCA) salt-induced hypertensive mice. Specific inactivation of JNK1/2 in adipocytes significantly alleviates Ang II-induced and DOCA salt-induced hypertension and target organ damage in mice. Interestingly, such beneficial effects are also observed in hypertensive mice after oral administration of JNK1/2 inhibitor SP600125. Mechanistically, adipose JNK1/2 acts on adipocytes to reduce the production of adiponectin (APN), then leads to promote serum and glucocorticoid-regulated kinase 1 (SGK1) phosphorylation and increases epithelial Na + channel α-subunit (ENaCα) expression in both renal cells and adipocytes, respectively, finally exacerbates Na + retention. In addition, chronic treatment of recombinant mouse APN significantly augments the beneficial effects of adipose JNK1/2 inactivation in DOCA salt-induced hypertension. By contrast, the blood pressure-lowering effects of adipose JNK1/2 inactivation are abrogated by adenovirus-mediated SGK1 overexpression in Ang II -treated adipose JNK1/2 inactivation mice. CONCLUSION: Adipose JNK1/2 promotes hypertension and targets organ impairment via fine-tuning the multiorgan crosstalk among adipose tissue, kidney, and blood vessels.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Camundongos , Animais , Angiotensina II/farmacologia , Adiponectina , Acetato de Desoxicorticosterona/efeitos adversos , Desoxicorticosterona/efeitos adversos , Pressão Sanguínea , Obesidade , Acetatos/efeitos adversos
7.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242697

RESUMO

Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NGAT1aR) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using Agtr1a-Cre mice and Cre-dependent AAVs to direct tdTomato to NGAT1aR, neuroanatomical studies revealed that NGAT1aR receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, Piezo1/2 To evaluate the functionality of NGAT1aR, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to Agtr1a-containing neurons. Two-photon intravital imaging in Agtr1a-GCaMP6s mice revealed that NGAT1aR couple their firing to elevated BP, induced by phenylephrine (i.v.). Furthermore, optical excitation of NGAT1aR at their soma or axon terminals within the caudal NTS of Agtr1a-ChR2 mice elicited robust frequency-dependent decreases in BP and heart rate, indicating that NGAT1aR are sufficient to elicit appropriate compensatory responses to vascular mechanosensation. Optical excitation also elicited hypotensive and bradycardic responses in ChR2-expressing mice that were subjected to deoxycorticosterone acetate (DOCA)-salt hypertension; however, the duration of these effects was altered, suggestive of hypertension-induced impairment of the baroreflex. Similarly, increased GCaMP6s fluorescence observed after administration of phenylephrine was delayed in mice subjected to DOCA-salt or chronic delivery of angiotensin II. Collectively, these results reveal the structure and function of NGAT1aR and suggest that such neurons may be exploited to discern and relieve hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , 60598 , Camundongos , Masculino , Feminino , Animais , Acetato de Desoxicorticosterona/farmacologia , Núcleo Solitário/fisiologia , Células Receptoras Sensoriais , Pressão Sanguínea/fisiologia , Fenilefrina/farmacologia , Canais Iônicos
8.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176904

RESUMO

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Assuntos
Acetato de Desoxicorticosterona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Ácido Glutâmico/metabolismo , Núcleo Supraóptico/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia
9.
Biomed Pharmacother ; 171: 116082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242036

RESUMO

To date, the complex pathological interactions between renal and cardiovascular systems represent a real global epidemic in both developed and developing countries. In this context, renovascular hypertension (RVH) remains among the most prevalent, but also potentially reversible, risk factor for numerous reno-cardiac diseases in humans and pets. Here, we investigated the anti-inflammatory and reno-cardiac protective effects of a polyphenol-rich fraction of bergamot (BPF) in an experimental model of hypertension induced by unilateral renal artery ligation. Adult male Wistar rats underwent unilateral renal artery ligation and treatment with deoxycorticosterone acetate (DOCA) (20 mg/kg, s.c.), twice a week for a period of 4 weeks, and 1% sodium chloride (NaCl) water (n = 10). A subgroup of hypertensive rats received BPF (100 mg/kg/day for 28 consecutive days, n = 10) by gavage. Another group of animals was treated with a sub-cutaneous injection of vehicle (that served as control, n = 8). Unilateral renal artery ligation followed by treatment with DOCA and 1% NaCl water resulted in a significant increase in mean arterial blood pressure (MAP; p< 0.05. vs CTRL) which strongly increased the resistive index (RI; p<0.05 vs CTRL) of contralateral renal artery flow and kidney volume after 4 weeks (p<0.001 vs CTRL). Renal dysfunction also led to a dysfunction of cardiac tissue strain associated with overt dyssynchrony in cardiac wall motion when compared to CTRL group, as shown by the increased time-to-peak (T2P; p<0.05) and the decreased whole peak capacity (Pk; p<0.01) in displacement and strain rate (p<0.05, respectively) in longitudinal motion. Consequently, the hearts of RAL DOCA-Salt rats showed a larger time delay between the fastest and the lowest region (Maximum Opposite Wall Delay-MOWD) when compared to CTRL group (p<0.05 in displacement and p <0.01 in strain rate). Furthermore, a significant increase in the levels of the circulating pro-inflammatory cytokines and chemokines (p< 0.05 for IL-12(40), p< 0.01 for GM-CSF, KC, IL-13, and TNF- α) and in the NGAL expression of the ligated kidney (p< 0.001) was observed compared to CTRL group. Interestingly, this pathological condition is prevented by BPF treatment. In particular, BPF treatment prevents the increase of blood pressure in RAL DOCA-Salt rats (p< 0.05) and exerts a protective effect on the volume of the contralateral kidney (p <0.01). Moreover, BPF ameliorates cardiac tissue strain dysfunction by increasing Pk in displacement (p <0.01) and reducing the T2P in strain rate motion (p<0.05). These latter effects significantly improve MOWD (p <0.05) preventing the overt dyssynchrony in cardiac wall motion. Finally, the reno-cardiac protective effect of BPF was associated with a significant reduction in serum level of some pro-inflammatory cytokines and chemokines (p<0.05 for KC and IL-12(40), p<0.01 for GM-CSF, IL-13, and TNF- α) restoring physiological levels of renal neutrophil gelatinase-associated lipocalin (NGAL, p<0.05) protein of the tethered kidney. In conclusion, the present results show, for the first time, that BPF promotes an efficient renovascular protection preventing the progression of inflammation and reno-cardiac damage. Overall, these data point to a potential clinical and veterinary role of dietary supplementation with the polyphenol-rich fraction of citrus bergamot in counteracting hypertension-induced reno-cardiac syndrome.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Humanos , Ratos , Masculino , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Lipocalina-2/metabolismo , Artéria Renal/metabolismo , Cloreto de Sódio , Interleucina-13/metabolismo , Ratos Wistar , Rim , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Citocinas/metabolismo , Quimiocinas/metabolismo , Interleucina-12/metabolismo , Polifenóis/farmacologia , Água/farmacologia
10.
Eur J Pharmacol ; 962: 176236, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048979

RESUMO

Myocardial remodeling, which occurs in the final stage of cardiovascular diseases such as hypertension, can ultimately result in heart failure. However, the pathogenesis of myocardial remodeling remains incompletely understood, and there is currently a lack of safe and effective treatment options. Salidroside, which is extracted from the plant Rhodiola rosea, shows remarkable antioxidant and anti-inflammatory characteristics. The purpose of this investigation was to examine the cardioprotective effect of salidroside on myocardial remodeling, and clarify the associated mechanism. Salidroside effectively attenuated cardiac dysfunction, myocardial hypertrophy, myocardial fibrosis, and cardiac inflammation, as well as renal injury and renal fibrosis in an animal model of deoxycortone acetate (DOCA)-salt-induced myocardial remodeling. The cardioprotective effect of salidroside was mediated by inhibiting the endothelin 1 and PI3K/AKT/NFκB signaling pathways. Salidroside was shown to inhibit the expression of endothelin1 in the hearts of mice treated with DOCA-salt. Additionally, it could prevent cardiomyocyte hypertrophy induced by endothelin-1 stimulation. Furthermore, Salidroside could effectively inhibit the excessive activation of the PI3K/AKT/NFκB pathway, which was caused by DOCA-salt treatment in mouse hearts and endothelin 1 stimulation in cardiomyocytes. Our study suggests that salidroside can be used as a therapeutic agent for the treatment of myocardial remodeling.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Camundongos , Animais , Endotelina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Cloreto de Sódio/efeitos adversos , Cloreto de Sódio na Dieta , Hipertrofia
11.
Biomed Pharmacother ; 170: 115987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056241

RESUMO

Heart failure (HF) preserved ejection fraction (HFpEF) accounts for almost 50% of HF, and hypertension is one of the pathogenies. The MAPK signaling pathway is closely linked to heart failure and hypertension; however, its function in HEpEF resulting from salt-sensitive hypertension is not well understood. In this work, a salt-sensitive hypertension-induced HEpEF model was established based on deoxycorticosterone acetate-salt (DOCA-salt) hypertension mice. The impact of the MAPK inhibitor (Doramapimod) on HEpEF induced by salt-sensitive hypertension was assessed through various measures, such as blood pressure, transthoracic echocardiography, running distance, and histological analysis, to determine its therapeutic effectiveness on cardiac function. In addition, the effects of high salt on myogenic cells were also evaluated in vitro using qRTPCR. The LV ejection fractions (LVEF) in DOCA-salt hypertension mice were over 50%, indicating that the salt-sensitive hypertension-induced HFpEF model was successful. RNA-seq revealed that the MAPK signaling pathway was upregulated in the HFpEF model compared with the normal mice, accompanied by hypertension, impaired running distance, restricted cardiac function, increased cross-sectional and fibrosis area, and upregulation of heart failure biomarkers, including GAL-3, LDHA and BNP. The application of Doramapimod could improve blood pressure, cardiomyocyte hypertrophy, and myocardial fibrosis, as well as decrease the aforementioned heart failure biomarkers. The qRTPCR results showed similar findings to these observations. Our findings suggest that the use of a MAPK inhibitor (Doramapimod) could be a potential treatment for salt-sensitive hypertension-induced HFpEF.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Volume Sistólico/fisiologia , Estudos Transversais , Cloreto de Sódio na Dieta , Fibrose , Biomarcadores
12.
Acta Pharmacol Sin ; 45(1): 76-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670136

RESUMO

Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 µM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 µM) and blocked by GsMTx4 (1.0 µM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 µM) and completely blocked by GsMTx4 (3.0 µM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Barorreflexo , Pressão Sanguínea , Mecanotransdução Celular/fisiologia , Acetato de Desoxicorticosterona/farmacologia , Transmissão Sináptica
13.
J Adv Res ; 55: 17-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36822392

RESUMO

INTRODUCTION: Leukocyte infiltration is an early event during cardiac remodeling frequently leading to heart failure (HF). Integrins mediate leukocyte infiltration during inflammation. However, the importance of specific integrins in hypertensive cardiac remodeling is still unclear. OBJECTIVES: To elucidate the significance of CD11b in hypertensive cardiac remodeling. METHODS: Angiotensin (Ang II) or deoxycorticosterone acetate (DOCA)-salt was used to induce cardiac remodeling in mice of gene knockout (KO), bone marrow (BM) chimera, and the CD11b neutralizing antibody or agonist leukadherin-1 (LA1) treatment. RESULTS: Our microarray data showed that integrin subunits Itgam (CD11b) and Itgb2 (CD18) were the most highly upregulated in Ang II-infused hearts. CD11b expression and CD11b/CD18+ myelomonocytes were also time-dependently increased. KO or pharmacological blockade of CD11b greatly attenuated cardiac remodeling and macrophage infiltration and M1 polarization induced by Ang II or DOCA-salt. This protection was verified in wild-type mice transplanted with CD11b-deficient BM cells. Conversely, administration of CD11b agonist LA1 showed the opposite effects. Further, CD11b KO reduced Ang II-induced macrophage adhesion and M1 polarization, leading to reduction of cardiomyocyte enlargement and fibroblast differentiation in vitro. The numbers of CD14+CD11b+CD18+ monocytes and CD15+CD11b+CD18+ granulocytes were obviously higher in HF patients than in normal controls. CONCLUSION: Our data demonstrate an important role of CD11b+ myeloid cells in hypertensive cardiac remodeling, and suggest that HF may benefit from targeting CD11b.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Hipertensão , Humanos , Animais , Camundongos , Remodelação Ventricular/fisiologia , Acetato de Desoxicorticosterona/efeitos adversos , Macrófagos/metabolismo , Hipertensão/metabolismo , Integrinas
14.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069178

RESUMO

We have previously shown that an excess of deoxycorticosterone acetate and high sodium chloride intake (DOCA/salt) in one-renin gene mice induces a high urinary Na/K ratio, hypokalemia, and cardiac and renal hypertrophy in the absence of hypertension. Dietary potassium supplementation prevents DOCA/salt-induced pathological processes. In the present study, we further study whether DOCA/salt-treated mice progressively develop chronic inflammation and fibrosis in the kidney and whether dietary potassium supplementation can reduce the DOCA/salt-induced renal pathological process. Results showed that (1) long-term DOCA/salt-treated one-renin gene mice developed severe kidney injuries including tubular/vascular hypertrophy, mesangial/interstitial/perivascular fibrosis, inflammation (lymphocyte's immigration), proteinuria, and high serum creatinine in the absence of hypertension; (2) there were over-expressed mRNAs of plasminogen activator inhibitor-1 (PAI-1), fibronectin, collagen type I and III, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP1), transforming growth factor-ß (TGF-ß), tumor necrosis factor-alpha (TNF-α), osteopontin, Nuclear factor kappa B (NF-κB)/P65, and intercellular adhesion molecule (ICAM)-1; and (3) dietary potassium supplementation normalized urinary Na/K ratio, hypokalemia, proteinuria, and serum creatinine, reduced renal hypertrophy, inflammations, and fibrosis, and down-regulated mRNA expression of fibronectin, Col-I and III, TGF-ß, TNF-α, osteopontin, and ICAM without changes in the blood pressure. The results provide new evidence that potassium and sodium may modulate proinflammatory and fibrotic genes, leading to chronic renal lesions independent of blood pressure.


Assuntos
Acetato de Desoxicorticosterona , Glomerulonefrite , Hipertensão , Hipopotassemia , Camundongos , Animais , Pressão Sanguínea , Cloreto de Sódio/metabolismo , Fibronectinas/metabolismo , Osteopontina/metabolismo , Potássio na Dieta/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Cloretos/metabolismo , Renina/metabolismo , Hipopotassemia/patologia , Fator de Necrose Tumoral alfa/metabolismo , Creatinina/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Glomerulonefrite/patologia , Inflamação/metabolismo , Suplementos Nutricionais , Fator de Crescimento Transformador beta/metabolismo , Proteinúria/metabolismo , Hipertrofia/metabolismo , Fibrose , Acetatos/metabolismo
15.
Medicina (Kaunas) ; 59(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893466

RESUMO

Background and Objectives: Curcumin, derived from Curcuma longa, is a well-known traditional medicinal compound recognized for its therapeutic attributes. Nevertheless, its efficacy is hampered by limited bioavailability, prompting researchers to explore the application of nanoemulsion as a potential alternative. Materials and Methods: This study delves into the antihypertensive effects of curcumin nanoemulsion (SNEC) by targeting the renin-angiotensin-aldosterone system (RAAS) and oxidative stress in deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats. To gauge the cardio-protective impact of SNEC in DOCA salt-induced hypertension, molecular docking was undertaken, uncovering curcumin's high affinity and adept binding capabilities to the active site of angiotensin-converting enzyme (ACE). Additionally, the investigation employed uninephrectomized rats to assess hemodynamic parameters via an AD instrument. Serum ACE, angiotensin II, blood urea nitrogen (BUN), and creatinine levels were quantified using ELISA kits, while antioxidant parameters were evaluated through chemical assays. Result: The outcomes of the molecular docking analysis revealed robust binding of curcumin to the ACE active site. Furthermore, oral administration of SNEC significantly mitigated systolic, diastolic, and mean arterial blood pressure in contrast to the DOCA-induced hypertensive group. SNEC administration also led to a reduction in left ventricular end-diastolic pressure (LVEDP) and an elevation in the maximum rate of left ventricular pressure rise (LV (dP/dt) max). Moreover, SNEC administration distinctly lowered serum levels of ACE and angiotensin II compared to the hypertensive DOCA group. Renal markers, including serum creatinine and BUN, displayed a shift toward normalized levels with SNEC treatment. Additionally, SNEC showcased potent antioxidant characteristics by elevating reduced glutathione, catalase, and superoxide dismutase levels, while decreasing the concentration of thiobarbituric acid reactive substances. Conclusions: Collectively, these findings underscore that curcumin nanoemulsion exerts noteworthy cardio-protective effects through ACE activity inhibition and remarkable antioxidant properties.


Assuntos
Curcumina , Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Acetato de Desoxicorticosterona/efeitos adversos , Angiotensina II/efeitos adversos , Simulação de Acoplamento Molecular , Ratos Wistar , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea
17.
J Mater Chem B ; 11(36): 8697-8716, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37646077

RESUMO

Currently, multidrug-resistant (MDR) infections are one of the most important threats, driving the search for new antimicrobial compounds. Cationic peptide antibiotics (CPAs) and ceragenins (CSAs) contain in their structures cationic groups and adopt a facially amphiphilic conformation, conferring the ability to permeate the membranes of bacteria and fungi. Keeping these features in mind, an amine steroid, DOCA-NH2, was found to be active against reference strains and MDR isolates of Gram-positive Enterococcus faecalis and Staphylococcus aureus and Gram-negative Escherichia coli and Pseudomonas aeruginosa. The compound was active against all the tested microorganisms, having bactericidal and fungicidal activity, displaying minimal inhibitory concentrations (MICs) between 16 and 128 µg mL-1. No synergy with clinically relevant antibacterial drugs was found. However, the compound was able to completely inhibit the biofilm formation of bacteria exposed to the MIC of the compound. For E. coli and E. faecalis, inhibition of biofilm formation occurred at half the MIC. Besides, DOCA-NH2 inhibited the dimorphic transition of Candida albicans at concentrations 4 times lower than the MIC, and can reduce the microorganism virulence and biofilm formation was significantly reduced at both MIC and half the MIC. Polydimethylsiloxane-based coatings containing DOCA-NH2 (0.5, 1.0, and 1.5 wt%) were prepared and tested against the E. coli biofilm formation under hydrodynamic conditions similar to those prevailing in ureteral stents. A biofilm reduction of approximately 80% was achieved when compared to the control.


Assuntos
Anti-Infecciosos , Acetato de Desoxicorticosterona , Infecções Urinárias , Humanos , Escherichia coli , Antibacterianos/farmacologia , Infecções Urinárias/tratamento farmacológico , Aminas , Biofilmes , Cátions
18.
Function (Oxf) ; 4(5): zqad043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609445

RESUMO

Non-enzymatic activation of renin via its interaction with prorenin receptor (PRR) has been proposed as a key mechanism of local renin-angiotensin system (RAS) activation. The presence of renin and angiotensinogen has been reported in the rostral ventrolateral medulla (RVLM). Overactivation of bulbospinal neurons in the RVLM is linked to hypertension (HTN). Previous studies have shown that the brain RAS plays a role in the pathogenesis of the deoxycorticosterone (DOCA)-salt HTN model. Thus, we hypothesized that PRR in the RVLM is involved in the local activation of the RAS, facilitating the development of DOCA-salt HTN. Selective PRR ablation targeting the RVLM (PRRRVLM-Null mice) resulted in an unexpected sex-dependent and biphasic phenotype in DOCA-salt HTN. That is, PRRRVLM-Null females (but not males) exhibited a significant delay in achieving maximal pressor responses during the initial stage of DOCA-salt HTN. Female PRRRVLM-Null subsequently showed exacerbated DOCA-salt-induced pressor responses during the "maintenance" phase with a maximal peak at 13 d on DOCA-salt. This exacerbated response was associated with an increased sympathetic drive to the resistance arterioles and the kidney, exacerbated fluid and sodium intake and output in response to DOCA-salt, and induced mobilization of fluids from the intracellular to extracellular space concomitant with elevated vasopressin. Ablation of PRR suppressed genes involved in RAS activation and catecholamine synthesis in the RVLM but also induced expression of genes involved in inflammatory responses. This study illustrates complex and sex-dependent roles of PRR in the neural control of BP and hydromineral balance through autonomic and neuroendocrine systems. Graphical abstract.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Receptor de Pró-Renina , Animais , Feminino , Camundongos , Pressão Sanguínea , Hipertensão/genética , Receptor de Pró-Renina/genética , Receptores de Superfície Celular , Renina/genética , Cloreto de Sódio , Vasoconstritores
19.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572787

RESUMO

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Nefropatias , Camundongos , Humanos , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Aldosterona/efeitos adversos , Aldosterona/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Acetatos/efeitos adversos , Acetatos/metabolismo , Fibrose
20.
Eur Rev Med Pharmacol Sci ; 27(15): 7264-7275, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37606135

RESUMO

OBJECTIVE: The aim of this study was to investigate the protective effect and mechanism of action (MOA) of Qiliqiangxin capsule (QL) in the deoxycorticosterone acetate (DOCA) salt-induced rat heart failure with preserved ejection fraction (HFpEF) model. MATERIALS AND METHODS: Nono-nephrectomy sixty Sprague Dawley (SD) rats received DOCA salt injection and 1% saline in drinking water for 4 weeks and were randomly divided into four groups on average: Model group (n=15), Sac/Val group (Sacubitril Valsartan 0.02 g/kg, n=15), QL-L group (Qiliqiangxin 0.25 g/kg, n=15) and QL-H group (Qiliqiangxin 1 g/kg, n=15). Another Normal group was set (n=15). Blood pressure, N-terminal pro-brain natriuretic peptide (NT-proBNP), cardiac index, echocardiography, and hemodynamics were measured to evaluate heart function. Masson and Wheat germ agglutinin (WGA) staining was performed to observe the fibrosis deposition and the cross-sectional area (CSA) of cardiomyocytes. The concentration levels of the serum cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-6, and IL-10 inflammatory factors, were detected by ELISA; matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), transforming growth factor-ß1 (TGF-ß1), nuclear factor-κB (NF-κB), Smad homologue 2 (Smad2) and Smad homologue 3 (Smad3) expression were detected by Western-blot. RESULTS: Compared with the Model group, QL treatment significantly ameliorated the heart function in DOCA salt-induced rat HFpEF model, showing a decrease in cardiac index, an increase of the EF and E/A ratio, a reduction in the left ventricular anterior/posterior wall (LVAW/LVPW), in the time contraction of isovolumic diastolic time (IVRT), -dP/dt Max, and Tau, and the decrease of serum NT-ProBNP. Masson and WGA staining indicated that QL inhibited the fibrosis deposition and the myocardial hypertrophy compared with the Model group, which was consistent in reducing the protein expression levels of cardiac remodeling such as TGF-ß1, MMP2, MMP9, Smad2, and Smad3. Moreover, QL treatment inhibited the expression of NF-κB in the heart tissues and decreased the serum concentration of pro-inflammatory cytokines TNF-α and IL-2, instead, increasing the IL-10 concentration. CONCLUSIONS: QL improved the cardiac function and inhibited the myocardial fibrosis in DOCA salt-induced rat HFpEF by improving diastolic dysfunction, preventing left ventricular hypertrophy, and ameliorating the inflammatory responses model in DOCA salt-induced rat HFpEF model.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Ratos , Animais , Metaloproteinase 2 da Matriz , Interleucina-10 , Metaloproteinase 9 da Matriz , Fator de Crescimento Transformador beta1 , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , NF-kappa B , Fator de Necrose Tumoral alfa , Remodelação Ventricular , Ratos Sprague-Dawley , Volume Sistólico , Miócitos Cardíacos , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...